MATH 54 - HINTS TO HOMEWORK 7

PEYAM TABRIZIAN

Here are a couple of hints to Homework 7! Enjoy! :)
SECTION 6.1: INNER PRODUCTS, LENGTHS, AND ORTHOGONALITY
6.1.9. Divide the vector by its length!
6.1.21. What they mean by the transpose definition is $\mathbf{u} \cdot \mathbf{v}=\mathbf{u}^{T} \mathbf{v}$. Use the facts that $(A+B)^{T}=A^{T}+B^{T}$ and $(c A)^{T}=c A^{T}$.
6.1.21. Use the fact that $\|\mathbf{w}\|^{2}=\mathbf{w} \cdot \mathbf{w}$ for any \mathbf{w}, and expand the left-hand-side out using a distributive law similar to $(a+b)(c+d)=a c+a d+b c+b d$.

SECTION 6.2: ORTHOGONAL SETS

Remember: A set \mathcal{B} is orthogonal if for every pair of distinct vectors \mathbf{u} and $\mathbf{v}, \mathbf{u} \cdot \mathbf{v}=0$. It is orthonormal if it is orthogonal and every vector has length 1 . An orthogonal set can be made orthonormal by dividing every vector by its length.
6.2.9.

$$
[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{c}
\frac{\mathbf{x} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \\
\frac{\mathbf{x} \mathbf{u}_{2}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}} \\
\frac{\mathbf{x} \cdot \mathbf{u}_{3}}{\mathbf{u}_{3} \cdot \mathbf{u}_{3}}
\end{array}\right]
$$

6.2.11, 6.2.15. The formula for orthogonal projection of \mathbf{y} on the line spanned by \mathbf{u} is:

$$
\hat{\mathbf{y}}=\left(\frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}}\right) \mathbf{u}
$$

The distance between \mathbf{u} and L is then $\|\mathbf{y}-\hat{\mathbf{y}}\|$

SECTION 6.3: ORTHOGONAL PROJECTION

Here are all the basic facts that you'll need:
(1) If $W=\operatorname{Span}\left\{\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}} \cdots \mathbf{u}_{\mathbf{k}}\right\}$, then the orthogonal projection of \mathbf{y} onto W is:

$$
\hat{\mathbf{y}}=\left(\frac{\mathbf{y} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}}\right) \mathbf{u}_{1}+\left(\frac{\mathbf{y} \cdot \mathbf{u}_{2}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}}\right) \mathbf{u}_{2}+\cdots+\left(\frac{\mathbf{y} \cdot \mathbf{u}_{\mathrm{k}}}{\mathbf{u}_{\mathrm{k}} \cdot \mathbf{u}_{\mathrm{k}}}\right) \mathbf{u}_{\mathrm{k}}
$$

(2) Then $\hat{\mathbf{y}}$ is in $W, y-\hat{\mathbf{y}}$ is in W^{\perp} (that is, orthogonal to W).
(3) $\mathbf{y}=(\hat{\mathbf{y}})+(y-\hat{\mathbf{y}})$, which decomposes \mathbf{y} as a sum of two vectors, one in W and the other one orthogonal to W.
(4) $\hat{\mathbf{y}}$ is the closest point to \mathbf{y} in W.

[^0](5) $\|y-\hat{\mathbf{y}}\|$ is the smallest distance between \mathbf{y} and W.
6.3.21.
(a) \mathbf{T}
(b) \mathbf{T}
(c) \mathbf{F}
(d) \mathbf{T}
(e) \mathbf{T}

Section 6.4: The Gram-Schmidt process

Use the formula given in Theorem 11. To get an orthonormal basis, just divide every vector at the end by its length. At every step, it's helpful to multiply your vector by a scalar to avoid fractions. This is ok, because you'll normalize them at the end anyway!
6.4.13. Here's the trick: If $A=Q R$, then $Q^{T} A=Q^{T} Q R=R$, since $Q^{T} Q=I$ (because the columns of Q are orthonormal). Hence:

$$
R=Q^{T} A
$$

SECTION 6.5: LEAST SQUARES PROBLEMS

Here's the general procedure to solve least-squares problems: To solve $A \mathbf{x}=\mathbf{b}$ in the least-squares sense, multiply both sides by A^{T}, and solve the (easier) equation $A^{T} A \hat{\mathbf{x}}=$ $A^{T} \mathbf{b}$. Your solution $\hat{\mathbf{x}}$ is called the least-squares solution. The least squares error is $\|A \hat{\mathbf{x}}-\mathbf{b}\|$.
6.5.13. No! Because $\|A \mathbf{v}-\mathbf{b}\|$ is smaller than $\|A \mathbf{u}-\mathbf{b}\|$, so \mathbf{u} cannot be a least-squares solution of $A \mathbf{x}=\mathbf{b}$, by the definition of a least-squares solution! (beginning of section 6.5)
6.5.15. Use the formula in theorem 15.
6.5.17.
(a) \mathbf{T}
(b) \mathbf{T}
(c) \mathbf{F}
(d) \mathbf{T}
(e) \mathbf{T}

[^0]: Date: Friday, October 14th, 2011.

